Negativity

The '''negativity'''quant-ph/0102117 is an [[entanglement measure]] which is easy to compute. The negativity can be defined as: :\mathcal{N}(\rho) := \frac{||\rho^{\Gamma_A}||_1-1}{2} where: * \rho^{\Gamma_A} is the [[partial transpose]] of \rho with respect to subsystem A * ||X||_1 = Tr|X| = Tr \sqrt{X^\dagger X} is the [[trace norm]] or the sum of the sigular values of the operator X . An alternative and equivalent definition is the absolute sum of the negative eigenvalues of \rho^{\Gamma_A}: : \mathcal{N}(\rho) := \sum_i \frac{|\lambda_{i}|-\lambda_{i}}{2} where \lambda_i are all of the eigenvalues. '''Properties''' * Is a [[convex function]] of \rho: : \mathcal{N}(\sum_{i}p_{i}\rho_{i}) \le \sum_{i}p_{i}\mathcal{N}(\rho_{i}) * Is an [[entanglement monotone]]: : \mathcal{N}(P(\rho_{i})) \le \mathcal{N}(\rho_{i}) :where P(\rho) is an arbitrary [[LOCC]] operation over \rho == See also == * [[Logarithmic negativity]] [[Category:Quantum Information Theory]] [[Category:Handbook of Quantum Information]] [[Category:Entanglement]]