Entropy of entanglement

The '''entropy of entanglement''' is an [[entanglement measure]] for a [[bipartite]] [[pure states]]. It is defined as the [[von Neumann entropy]] of one of the [[reduced states]]. That is, for a pure state \rho_{AB} =|\Psi\rangle\langle\Psi|_{AB} , it is given by: :\mathcal{E}(\rho) \equiv \mathcal{S}(\rho_A) = \mathcal{S}(\rho_B) , where \rho_A=\textrm{Tr}_{B}(|\Psi\rangle\langle\Psi|) and \rho_B=\textrm{Tr}_{A}(|\Psi\rangle\langle\Psi|). Many entanglement measures reduce to the entropy of entanglement when evaluated on pure states. Among those are * [[Distillable entanglement]] * [[Entanglement cost]] * [[Entanglement of formation]] * [[Relative entropy of entanglement]] * [[Squashed entanglement]] Some entanglement measures that do not reduce to the entropy of entanglement are * [[Negativity]] * [[Logarithmic negativity]] * [[Robustness of entanglement]] == See also == * [[Quantum relative entropy]] [[Category:Entropy]] [[Category:Handbook of Quantum Information]] [[Category:Entanglement]]