Separable operations

In [[Quantum information science - theory|quantum information theory]], '''separable operations''' on a general multipartite [[states|quantum state]] is an operations with product [[Kraus decomposition|Kraus operators]]. Abstract mathematical definition for the case of $K$-partite quantum state $\rho$ can be formulated as $$\rho\mapsto\rho^{\prime}=\Lambda(\rho)=\sum_{k=1}^N A_k\rho A_k^{\dagger},$$ with operators $A_k$ satisfying following conditions: $$\sum_{k=1}^N A_k^{\dagger}A_k=\mathbb{I}$$ $$A_k=\otimes_{l=1}^K A_{k,l}$$ [[LOCC operations]] are subclass of separable operations. Separable operations play a big role in [[state distinguishability and state discrimination]]. = References = *V. Gheorghiu, R. B. Griffiths, ''Phys. Rev. A'' '''78''', 020304 (R) (2008) *V. Gheorghiu, R. B. Griffiths, ''Phys. Rev. A'' '''76''', 032310 (2007) *R. Duan, Y. Feng, Y. Xin, M. Ying, '''arXiv:0705.0795 [quant-ph]''' [[Category:Handbook of Quantum Information]] {{Stub}}